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3. ANALYTICAL DESCRIPTION OF TIME AND SPECTRAL CHARACTERISTICS
OF ULTRAWIDEBAND SIGNALS

Roger A. Dalke1

3.1 Introduction

A theoretical analysis of UWB signals can provide important insights into how UWB emissions
affect various types of RF communications devices. In addition to allowing for direct calculation
of interference effects, analytical results can be used to aid in the planning, design, and validation
of measurements. This section details the results obtained from an analysis of proposed UWB
pulse position modulation schemes. 

The approach used in the analysis and the results are presented in this section. The mathematical
details will be published elsewhere.

3.2 Power Spectrum of UWB Signals

The power spectral density is the average power in the signal per unit bandwidth and hence
provides important information on the distribution of power over the RF spectrum. The power
spectral density for a UWB pulse position modulation scheme using short duration pulses
transmitted at some nominal pulse repetition rate  (PRR) is given in this section. The pulse
position is randomized or dithered with respect to the nominal pulse period. The randomization
scheme analyzed in this section is referred to as fixed time-base dither.

3.2.1 UWB Signals Using Fixed Time-base Dither

In the fixed time-base dither scheme, each pulse occurs at the nominal pulse period, , minus a
time increment randomly distributed over a fraction of the nominal period as given in Equation
3.1. This expression also includes binary pulse modulation as proposed for communications
applications.
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(3.2)

(3.3)

(3.4)

where  represents the pulse shape that corresponds to an information bit (e.g.,  represents
the value 0,  represents the value 1). The coefficients  are related to whether the nth 
information bit   has the value 0 or 1 as follows:

where  are the information bit probabilities (i.e.,  is the probability of a bit having the value
0, and  is the probability of a bit having the value 1). Finally, the random variables 
define the pulse randomization or dithering and are described by a density function , where

For fixed time-base dither, the random variables  and  are each assumed to be independent
and identically distributed (iid).

It should be noted that the signal given in Equation 3.1 is quite general in terms of the pulse
shape, binary modulation method,  and pulse randomization statistics. Hence, the results
presented in this section can be used to predict the power spectral density at various points in the
radio link between  an interfering UWB transmitter and a victim receiver (e.g., at the output of
the UWB transmitter, the UWB signal radiated from a particular antenna, or in the IF section of a
narrowband RF receiver). When dealing with linear systems, the various pulse shapes are simply
related by convolutions with the appropriate transfer functions.

The power spectral density is the Fourier transform of the autocorrelation function. The
autocorrelation function is obtained by taking the expected value of the signal at two different
times which is expressed mathematically as 
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(3.5)

(3.6)

Taking the expectation in Equation 3.4 yields

were the symbol  is the convolution operator and  is the time lag. Functions given in
upper case letters ( ) are the Fourier transforms of the pulse and dithering functions.

The statistics for this process are periodic with period  as is evidenced by Equation 3.5. Such
processes are commonly referred to as cyclostationary. Essentially this means that the statistics
depend upon when the process is observed during a period. The victim receiver may observe the
process at an arbitrary time during a period and hence it is useful (and simplifying) to calculate
the average over all possible observation times within a period. Taking the time average over one
period and the Fourier transform of Equation 3.5 yields the average power spectral density of the
fixed time-base dithered UWB signal

The power spectral density has both discrete  and continuous  components that depend on the
pulse spectrum and the Fourier transform of the density function used to randomize the signal.
Note that when  is small at multiples of the PRR, the discrete components are small and the
spectrum is predominantly continuous.  When  approaches one (negligible dithering) and
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(3.7)

 the bits do not change (e.g., ), the continuous spectrum disappears, and the line spectrum
dominates. The quantity  is the expected value of the pulses. 

If bit values are equiprobable (i.e., ) and the pulse representing a 1 is a time delayed
version of the pulse representing a 0 (i.e., ), equation 3.6 reduces to

When the information bit time delay  is small relative to the to the dithering delay (i.e.,
 over the range of frequencies for which  is significant), the effects of pulse

position modulation on the power spectrum are inconsequential.

The results of an example calculation using Equation 3.7 are shown in the following figures. For
this example, the signal consists of a short-duration pulse (Figure 3.1) transmitted at a 10 MHz
PRR. The dithered pulse position is random and uniformly distributed over 50% of the pulse
period. In this calculation, it is assumed that the effects of information bit modulation are
negligible over the frequency range of interest. The power spectral density over a frequency range
of 1-5000 MHz is shown in Figure 3.2. The magnitude of the spectrum is normalized to the peak
of the continuous distribution (at about 250 MHz). The Fourier transform of the density function
for this example is . This function has nulls at frequencies equal to 
( ), hence the interval between discrete spectral lines is 20 MHz as shown in the
figures.  For frequencies above 20 MHz, the continuous spectrum is approximately the same as
the pulse spectrum (i.e., ). Figure 3.3 shows the discrete spectrum over a more limited
range (800-1600 MHz) to highlight the individual spectral lines.



3-5

-0.25

0

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Time (ns)

V
ol

ta
ge

Figure 3.1. Time domain pulse shape.
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Figure 3.2. Power spectral density for a fixed time-base dithered 10 MHz
UWB  signal. The pulse positions are uniformly distributed over
50% of the pulse repetition period.
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Figure 3.3. Power spectral density showing discrete and continuous spectrum
from 800 to 1600 MHz.

The mean power in the bandwidth of a narrowband victim RF receiver as a function of frequency
can easily be calculated from these results. For example, Figure 3.4 shows the power available to
a receiver with a nominal 10 kHz bandwidth. As shown in the figure, the discrete spectrum is not
a factor for RF frequencies above a few hundred MHz. For narrowband victim receivers where
gains due to the UWB transmitter filters/antenna, propagation channel, and receiver are fairly
constant over the receiver bandwidth, the received interference power can easily be calculated by
applying the appropriate gain factors to the power in the receiver bandwidth at the center
frequency of the receiver.
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Figure 3.4  Power spectral density showing the continuous spectrum in a 10
kHz bandwidth compared to the discrete spectrum.

(3.8)

3.2.2 Power Spectrum for Finite Duration and Repeated Signals

The results based on Equation 3.1 assume that the signal is on continuously. Obviously, real
signals are of finite duration. Also, for some proposed systems, the signal is transmitted for a
length of time, say , and then repeated. In this section, we extend the results presented above
to finite duration and repeated signals.

To obtain the power spectrum for a finite duration signal, the following window function 

is multiplied by  (Equation 3.1). The result is that given in Equation 3.7 convolved with the
spectrum of the window,  i.e.,  as may be expected. As the window duration

increases, the spectrum shape approaches .

When the series  is windowed and repeated, the autocorrelation function is obtained by
taking the expectation of periodic extension of a windowed portion of the series or
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(3.9)

(3.10)

(3.11)

The resulting spectrum is 

which is now discrete with spectral lines at frequency intervals of .

3.3 Band Limited Signal Statistics for Fixed Time-base Dithered Systems

From the standpoint of a victim receiver, a fixed time-base dithered UWB signal is a random
process. A knowledge of the statistics of such a process is important in predicting how
interference affects the performance of a victim receiver. When the UWB PRR is larger than the
receiver bandwidth, it may be expected that the received signal would appear to be
indistinguishable from Gaussian noise. Since receiver performance in a Gaussian noise
environment is well understood, quantifying conditions for which the received UWB interference
resembles Gaussian noise is important in predicting receiver performance and developing
emissions requirements. Also, when the received signal is Gaussian, only one parameter (mean
power) is required to characterize the process. In this section we present the results of an analysis
of the fixed time-base dither scheme that can be used to predict when the received UWB signal is
approximately Gaussian.

For this analysis, we seek to determine the probability density function that describes the
statistics of the UWB signal as seen by the victim receiver (e.g., the final IF stage of the
receiver). The following relationship between the density function , its characteristic
function , and the pulse randomization density function  is used to obtain an
approximate expression for the received signal statistics

Formally, the desired density function is obtained by inserting the UWB signal  (Equation 3.1)
into Equation 3.11 and taking the inverse Fourier transform of the characteristic function. 
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(3.12)

(3.13)

(3.14)

The characteristic function is periodic since the process is cyclostationary as discussed in Section
3.2.1. For purposes of this analysis, the time averaged statistics are obtained by averaging over a
period as with the power spectral density function 

After some manipulations, the density function can be expanded into the well known Edgeworth
[1] series. The first four terms of the series are 

where

The desired density function is related to  by using the transformation
where is the mean and  is the standard deviation, hence .

The first term in the series is the standard normal distribution. The following terms are scaled by
coefficients known as the skewness  and excess  [1 ]. 

In general, the skewness and excess are rather complicated functionals of the pulse shape  and
the pulse randomization statistics . In the case of a narrowband receiver with a center frequency
larger than twice the PRR, the expressions are greatly simplified. The following results assume
that the power in the spectral lines (if present) is much smaller than that due to the power in the
receiver bandwidth due to the continuous spectrum. In addition, if the UWB pulse 
spectrum is approximately constant over the bandwidth of the receiver, the variance ,
skewness, and excess can be expressed in terms of the baseband impulse response of the receiver
filter, , as follows:
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Figure 3.5. The excess as a function of receiver bandwidth.

These results show that the variance is proportional to the receiver bandwidth as expected. The
mean and skewness are negligible due to the oscillatory characteristics of the bandpass filtered
signal. The behavior of the excess as a function of receiver bandwidth was calculated for a
receiver with a raised cosine lowpass characteristic and a UWB signal with a 10 MHz  PRR. The
signal is dithered uniformly over 50% of the pulse repetition period. 

Figure 3.5 shows the excess as a funtion of receiver bandwidth. Note that the distribution is
approximately Gaussian up to about a 1MHz bandwidth. The excess then decreases to a
minimum at about 20 MHz, after which it increases. The normalized distribution  for bandwidths
below 1 MHz and at10 and 20 MHz are shown in Figure 3.6. 
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Figure 3.6. The distributions for various receiver bandwidths of less than
1 MHz, and bandwidths of 10 and 20 MHz. 

The results presented in this section can be used to predict when an interfering fixed time-base
dithered UWB signal is approximately Gaussian in nature, and hence, should be useful in
providing guidance to system designers and regulators. Furthermore, as shown in the previous
example, they can be used to estimate statistics for  bandwidths comparable and exceeding the
UWB PRR. In cases where the bandwidth is much larger than the PRR, so that the receiver
actually resolves the individual pulses, the results presented above are no longer valid. In such
cases, amplitude statistics can readily be estimated by calculating the fraction of time that a
particular pulse (as seen by the receiver) amplitude is exceeded during the pulse repetition
period.
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